Consistent Markov branching trees with discrete edge lengths∗

نویسنده

  • Harry Crane
چکیده

We study consistent collections of random fragmentation trees with random integervalued edge lengths. We prove several equivalent necessary and sufficient conditions under which Geometrically distributed edge lengths can be consistently assigned to a Markov branching tree. Among these conditions is a characterization by a unique probability measure, which plays a role similar to the dislocation measure for homogeneous fragmentation processes. We discuss this and other connections to previous work on Markov branching trees and homogeneous fragmentation processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum Field Theory and Phylogenetic Branching

A calculational framework is proposed for phylogenetics, using nonlocal quantum field theories in hypercubic geometry. Quadratic terms in the Hamiltonian give the underlying Markov dynamics, while higher degree terms represent branching events. The spatial dimension L is the number of leaves of the evolutionary tree under consideration. Momentum conservation modulo Z ×L 2 in L ← 1 scattering co...

متن کامل

Rayleigh Processes, Real Trees, and Root Growth with Re-grafting

The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random tree-like object naturally associated with a standard Brownian excursion, may be thought of as a random compact real tree. The continuum random tree ...

متن کامل

ar X iv : m at h / 04 02 29 3 v 1 [ m at h . PR ] 1 8 Fe b 20 04 RAYLEIGH PROCESSES , REAL TREES , AND ROOT GROWTH WITH RE - GRAFTING

The real trees form a class of metric spaces that extends the class of trees with edge lengths by allowing behavior such as infinite total edge length and vertices with infinite branching degree. Aldous’s Brownian continuum random tree, the random tree-like object naturally associated with a standard Brownian excursion, may be thought of as a random compact real tree. The continuum random tree ...

متن کامل

ar X iv : 1 21 1 . 21 79 v 1 [ m at h . PR ] 9 N ov 2 01 2 HEREDITARY TREE GROWTH AND LÉVY FORESTS . ∗

We introduce the notion of a hereditary property for rooted real trees and we also consider reduction of trees by a given hereditary property. Leaf-length erasure, also called trimming, is included as a special case of hereditary reduction. We only consider the metric structure of trees, and our framework is the space T of pointed isometry classes of locally compact rooted real trees equipped w...

متن کامل

Exact Algorithms for the Canadian Traveller Problem on Paths and Trees

The Canadian Traveller problem is a stochastic shortest paths problem in which one learns the cost of an edge only when arriving at one of its endpoints. The goal is to find an adaptive policy (adjusting as one learns more edge lengths) that minimizes the expected cost of travel. The problem is known to be #P hard. Since there has been no significant progress on approximation algorithms for sev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013